HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

1 Higher–Order Differential Equations

Consider the differential equation: $y^{(n)} + p_{n-1}(x) y^{(n-1)} + \ldots + p_1(x) y' + p_0(x) y = 0$

General Solution

A general solution of the above nth order *homogeneous* linear differential equation on some interval I is a function of the form

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x)$$

where y_1, \ldots, y_n are linearly independent solutions (basis) on I.

Theorem – Existence and Uniqueness of IVP

If the $p_0(x)$, $p_1(x)$, . . ., $p_{n-1}(x)$ in the differential equations are continuous on an open interval I, then the initial value problem [with x_0 in I] has a unique solution in I.

<u>Wronskian</u>

The Wronskian of y_1, y_2, \ldots, y_n is defined as

$$W(y_1, y_2, \dots, y_n) = \begin{cases} y_1 & y_2 & \dots & y_n \\ y_1' & y_2' & \dots & y_n' \\ y_1'' & y_2'' & \dots & y_n'' \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{cases}$$

Theorem – Linear Dependence and Independence of Solutions

Let po	$(x), p_1(x), \ldots, p_{n-1}(x)$ be continuous in I, $[x_0, x_1]$, and let y_1, y_2, \ldots, y_n be n	solutions of the differential equation. Then
(1)	$W(y_1, y_2, \ldots, y_n)$ is either zero for all $x \in I$ or for no value of $x \in I$.	
(2)	y_1, y_2, \ldots, y_n are linearly independent if and only if $W(y_1, y_2, \ldots, y_n) \neq 0$	

Theorem – Existence of a General Solution

Theorem – General Solution

[Exercise] Consider the third–order equation

$$y''' + a(x) y'' + b(x) y' + c(x) y = 0$$

where a, b and c are continuous functions of x in some interval I. The Wronskian of $y_1(x)$, $y_2(x)$, and $y_3(x)$ is defined as

$$W = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix}$$

where y_1 , y_2 and y_3 are solutions of the differential equation.

- (a) Show that W satisfies the differential equation W' + a(x) W = 0
- (b) Prove that W is always zero or never zero.
- (c) Can you extend the above results to nth-order linear differential equations?

2 nth-Order Homogeneous Equations with Constant Coefficients

$$y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = 0$$

Differential Equation
$$\lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0 = 0$$

Characteristic Equation

Case I Distinct Roots, $\lambda_1, \lambda_2, \ldots, \lambda_n$

The corresponding linearly independent solutions are

 $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_n x}$

<u>Case II</u> Multiple Roots, $\lambda_1 = \lambda_2 = \ldots = \lambda_m = \lambda$

The corresponding linearly independent solutions are

 $e^{\lambda x}, x e^{\lambda x}, x^2 e^{\lambda x}, \dots, x^{m-1} e^{\lambda x}$

<u>Case III</u> Complex Simple Roots $\lambda_1 = \gamma + i \omega$, $\lambda_2 = \gamma - i \omega$

The corresponding linearly independent solutions are

 $e^{\gamma x}\cos\omega x$, $e^{\gamma x}\sin\omega x$

Case IVComplex Multiple Roots $\lambda_1 = \lambda_3 = \lambda_5 = \ldots = \lambda_{2m-1} = \gamma + i \omega$ $\lambda_2 = \lambda_4 = \lambda_6 = \ldots = \lambda_{2m} = \gamma - i \omega$

The corresponding linearly independent solutions are

 $e^{\gamma x} \cos \omega x$, $x e^{\gamma x} \cos \omega x$, ..., $x^{m-1} e^{\gamma x} \cos \omega x$ $e^{\gamma x} \sin \omega x$, $x e^{\gamma x} \sin \omega x$, ..., $x^{m-1} e^{\gamma x} \sin \omega x$ **[Example]** y''' - 3y'' - 10y' + 24y = 0

[Solution] The characteristic equation is $\lambda^3 - 3\lambda^2 - 10\lambda + 24 = 0$ or $(\lambda - 2)(\lambda + 3)(\lambda - 4) = 0$ $\lambda = 2, -3, 4$ (Case I) $\Rightarrow y = c_1 e^{2x} + c_2 e^{-3x} + c_3 e^{4x}$

[Example] $y^{(4)} - 4y^{"} + 6y^{"} - 4y' + y = 0$ [Solution] The characteristic equation is $\lambda^4 - 4\lambda^3 + 6\lambda^2 - 4\lambda + 1 = 0$ or $(\lambda - 1)^4 = 0$ $\lambda = 1, 1, 1, 1$ (Case II) $\Rightarrow y = c_1 e^x + c_2 x e^x + c_3 x^2 e^x + c_4 x^3 e^x$

[Example] $y^{(5)} - 2y^{(4)} + 8y'' - 12y' + 8y = 0$ [Solution] The characteristic equation is $\lambda^5 - 2\lambda^4 + 8\lambda^2 - 12\lambda + 8 = 0$ or $(\lambda + 2)(\lambda^2 - 2\lambda + 2)^2 = 0$ $\lambda = -2, 1 + i, 1 - i, 1 + i, 1 - i$ (Case IV) $\Rightarrow y = c_1 e^{-2x} + c_2 e^x \cos x + c_3 x e^x \cos x + c_4 e^x \sin x + c_5 x e^x \sin x$ [Exercise 1] Reduction of Order of Higher–Order Equations

[Exercise 2] Consider the third–order equation

y''' + a(x) y'' + b(x) y' + c(x) y = 0

and let $y_1(x)$ and $y_2(x)$ be two given linearly independent solutions.

Define $y_3(x) = v(x) y_1(x)$ and assume that y_3 is a solution to the equation.

- (a) Find a second–order differential equation that is satisfied by v'.
- (b) Show that $(y_2/y_1)'$ is a solution of this equation.
- (c) Use the result of part (b) to find a second, linearly independent solution of the equation derived in part (a).

[Exercise 3] [Euler-Cauchy Equation of the Third Order] The Euler equation of the third order is

$$x^{3} y''' + a x^{2} y'' + b x y' + c y = 0$$

Show that $y = x^m$ is a solution of the equation if and only if m is a root of the characteristic equation

$$m^{3} + (a - 3)m^{2} + (b - a + 2)m + c = 0$$

What is the characteristic equation for the nth order Euler equation?

2 Nonhomogeneous Equations

$$y^{(n)} + p_{n-1}(x) y^{(n-1)} + \ldots + p_1(x) y' + p_0(x) y = r(x)$$

 $\Rightarrow y(x) = y_h(x) + y_p(x)$

where again $y_h(x) = c_1 y_1 + c_2 y_2 + ... + c_n y_n$ is a general solution of the homogeneous equation and $y_p(x)$ is a particular solution to the nonhomogeneous equation.

(1) Method of Undetermined Coefficients

Same as in the Chapter 2.

In summary, for a constant coefficient nonhomogeneous linear differential equation of the form

 $y^{(n)} + a y^{(n-1)} + \ldots + f y' + g y = r(x)$

we have the following rules for the method of undetermined coefficients:

- (A) **Basic Rule:** If r(x) in the nonhomogeneous differential equation is one of the functions in the first column in the following table, choose the corresponding function y_p in the second column and determine its undetermined coefficients by substituting y_p and its derivatives into the nonhomogeneous equation.
- (B) Modification Rule: If any term of the suggested solution $y_p(x)$ is the solution of the corresponding homogeneous equation, multiply y_p by x repeatedly until no term of the product $x^k y_p$ is a solution of the homogeneous equation. Then use the product $x^k y_p$ to solve the nonhomogeneous equation.
- (C) Sum Rule: If r(x) is sum of functions listed in several lines of the first column of the following table, then choose for y_p the sum of the functions in the corresponding lines of the second column.

Table for Choosing y_p

r(x)	$y_p(x)$
$P_n(x)$	$a_0 + a_1 x + \ldots + a_n x^n$
$P_n(x) e^{ax}$	$(a_0 + a_1 x + \ldots + a_n x^n) e^{ax}$
$ \left.\begin{array}{c} P_n(x) \ e^{ax} \ sin \ bx \\ or/and \end{array}\right\} $	$(a_0 + a_1 x + \ldots + a_n x^n) e^{ax} \sin bx$ +
$Q_n(x) e^{ax} \cos bx$	$(c_0 + c_1 x + \ldots + c_n x^n) e^{ax} \cos bx$

where $P_n(x)$ and $Q_n(x)$ are polynomials in x of degree n (n $\varepsilon 0$).

EXAMPLE 1 Initial value problem. Modification Rule

Solve the initial value problem

(6) $y''' + 3y'' + 3y' + y = 30e^{-x}$, y(0) = 3, y'(0) = -3, y''(0) = -47.

Solution. 1st Step. The characteristic equation is $\lambda^3 + 3\lambda^2 + 3\lambda + 1 = (\lambda + 1)^3 = 0$. It has the triple root $\lambda = -1$. Hence a general solution of the homogeneous equation is

$$y_h = c_1 e^{-x} + c_2 x e^{-x} + c_3 x^2 e^{-x}$$

= $(c_1 + c_2 x + c_3 x^2) e^{-x}$.

2nd Step. If we try $y_p = Ce^{-x}$, we get -C + 3C - 3C + C = 30, which has no solution. Try Cxe^{-x} and Cx^2e^{-x} . The Modification Rule calls for

Then

Sec. 2.15

$$y_p = Cx^3 e^{-x}.$$

$$y'_p = C(3x^2 - x^3)e^{-x},$$

$$y''_p = C(6x - 6x^2 + x^3)e^{-x},$$

$$y'''_p = C(6 - 18x + 9x^2 - x^3)e^{-x}.$$

Substitution of these expressions into (6) and omission of the common factor e^{-x} gives

$$C(6 - 18x + 9x^{2} - x^{3}) + 3C(6x - 6x^{2} + x^{3}) + 3C(3x^{2} - x^{3}) + Cx^{3} = 30.$$

The linear, quadratic, and cubic terms drop out, and 6C = 30. Hence C = 5. This give $y_p = 5x^3e^{-x}$.

3rd Step. We now write down $y = y_h + y_p$, the general solution of the given equation. From it we find c_1 by the first initial condition. We insert the value, differentiate, and determine c_2 from the second initial condition, insert the value, and finally determine c_3 from y''(0) and the third initial condition:

$$y = y_h + y_p = (c_1 + c_2 x + c_3 x^2) e^{-x} + 5x^3 e^{-x}, \qquad y(0) = c_1 = 3$$

$$y' = \begin{bmatrix} -3 + c_2 + (-c_2 + 2c_3)x + (15 - c_3)x^2 - 5x^3 \end{bmatrix} e^{-x}, \qquad y'(0) = -3 + c_2 = -3, \qquad c_2 = 0$$

$$y'' = \begin{bmatrix} 3 + 2c_3 + (30 - 4c_3)x + (-30 + c_3)x^2 + 5x^3 \end{bmatrix} e^{-x}, \qquad y''(0) = 3 + 2c_3 = -47, \qquad c_3 = -25$$

Hence the answer of our problem is (Fig. 71)

$$y = (3 - 25x^2)e^{-x} + 5x^3e^{-x}.$$

The dashed curve in Fig. 71 is y_p . Does the curve of y agree with what you can expect from the initial conditions? From the limit as $x \to \infty$?

Higher-Order ODE - 11

(2) Method of Variation of Parameters

$$y^{(n)} + p_{n-1}(x) y^{(n-1)} + \ldots + p_1(x) y' + p_0(x) y = r(x)$$

Given \Rightarrow $y_h = c_1 y_1 + c_2 y_2 + \ldots + c_n y_n$

Assume $y_p = u_1 y_1 + u_2 y_2 + ... + u_n y_n$

where u_1 , ..., u_n are functions of x. Since the particular solution satisfies the non-homogeneous differential equation, we have

$$y_p^{(n)} + p_{n-1}(x) y_p^{(n-1)} + \ldots + p_1(x) y_p' + p_0(x) y_p = r(x)$$

Now $y_p' = u_1' y_1 + \ldots + u_n' y_n + u_1 y_1' + \ldots + u_n y_n'$

Assume $u_1' y_1 + u_2' y_2 + \ldots + u_n' y_n = 0$ then $y_p' = u_1 y_1' + \ldots + u_n y_n'$

and
$$y_p'' = u_1' y_1' + \ldots + u_n' y_n' + u_1 y_1'' + \ldots + u_n y_n''$$

Again, we **assume**

$$u_1' y_1' + u_2' y_2' + \ldots + u_n' y_n' = 0$$
 we have $y_p'' = u_1 y_1'' + \ldots + u_n y_n''$

After differentiation n times, we have a set of simultaneous differential equations of $u_1', u_2' \dots, u_n'$:

$$y_{1}u_{1}' + y_{2}u_{2}' + y_{3}u_{3}' + \dots + y_{n}u_{n}' = 0$$

$$y_{1}'u_{1}' + y_{2}'u_{2}' + y_{3}'u_{3}' + \dots + y_{n}'u_{n}' = 0$$

$$y_{1}''u_{1}' + y_{2}''u_{2}' + y_{3}''u_{3}' + \dots + y_{n}''u_{n}' = 0$$

$$\dots$$

$$y_{1}^{(n-2)}u_{1}' + y_{2}^{(n-2)}u_{2}' + y_{3}^{(n-2)}u_{3}' + \dots + y_{n}^{(n-2)}u_{n}' = 0$$

$$y_{1}^{(n-1)}u_{1}' + y_{2}^{(n-1)}u_{2}' + y_{3}^{(n)}u_{3}' + \dots + y_{n}^{(n-1)}u_{n}' = r(x_{1})$$

The solutions of u_1' , u_2' , ..., u_n' are

$$u_{1}' = \frac{1}{W} \begin{vmatrix} 0 & y_{2} & \dots & y_{n} \\ 0 & y_{2}' & \dots & y_{n}' \\ \dots & \dots & \dots & \dots \\ r(x) & y_{2}^{(n-1)} & \dots & y_{n}^{(n-1)} \end{vmatrix} = \frac{W_{1}}{W} r(x)$$
$$u_{2}' = \frac{1}{W} \begin{vmatrix} y_{1} & 0 & \dots & y_{n} \\ y_{1}' & 0 & \dots & y_{n}' \\ \dots & \dots & \dots & \dots \\ y_{1}^{(n-1)} r(x) & \dots & y_{n}^{(n-1)} \end{vmatrix} = \frac{W_{2}}{W} r(x)$$
$$\dots$$
$$u_{n}' = \frac{1}{W} \begin{vmatrix} y_{1} & y_{2} & \dots & 0 \\ y_{1}' & y_{2}' & \dots & 0 \\ \dots & \dots & \dots & \dots \\ y_{1}^{(n-1)} y_{2}^{(n-1)} & \dots & r(x) \end{vmatrix} = \frac{W_{n}}{W} r(x)$$

Thus, we have

$$y_p(x) = y_1 \int \frac{W_1}{W} r(x) dx + y_2 \int \frac{W_2}{W} r(x) dx + \ldots + y_n \int \frac{W_n}{W} r(x) dx$$

Higher-Order ODE - 13

[Example]
$$x^{3}y''' - 4x^{2}y'' + 8xy' - 8y = 6x^{3}(x^{2}+1)^{-3/2}, \quad x > 0$$

[Solution] Important! We must re-write the above equation in the standard form:

$$y''' - \frac{4}{x} y'' + \frac{8}{x^2} y' - \frac{8}{x^3} y = r(x) = 6(x^2 + 1)^{-3/2}$$

The solution of the corresponding homogeneous equation is

$$y_h = c_1 x + c_2 x^2 + c_3 x^4$$

or $y_1 = x$, $y_2 = x^2$, $y_3 = x^4$

$$\Rightarrow W(x) = \begin{vmatrix} x & x^2 & x^4 \\ 1 & 2x & 4x^3 \\ 0 & 2 & 12x^2 \end{vmatrix} = 6 x^4 \ (\neq 0 \text{ on } (0, \infty))$$

$$u_{1'} = \frac{1}{W} \begin{vmatrix} 0 & y_{2} & y_{3} \\ 0 & y_{2'} & y_{3'} \\ r(x) & y_{2''} & y_{3''} \end{vmatrix} = \frac{1}{W} \begin{vmatrix} 0 & x^{2} & x^{4} \\ 0 & 2x & 4x^{3} \\ 6(x^{2}+1)^{-3/2} & 2 & 12x^{2} \end{vmatrix} = \frac{12x^{5}(x^{2}+1)^{-3/2}}{6x^{4}} = 2x(x^{2}+1)^{-3/2}$$
$$u_{2'} = -3(x^{2}+1)^{-3/2}$$

$$u_{3'} = x^{-2} (x^{2} + 1)^{-3/2}$$

After integration, we have

$$u_{1} = \frac{-2}{(x^{2}+1)^{1/2}}$$
$$u_{2} = \frac{-3x}{(x^{2}+1)^{1/2}}$$
$$u_{3} = \frac{2x^{2}+1}{x(x^{2}+1)^{1/2}}$$

$$\therefore \qquad y_p = u_1 y_1 + u_2 y_2 + u_3 y_3 = -2 x (x^2 + 1)^{-3/2}$$

$$\Rightarrow \quad y = c_1 x + c_2 x^2 + c_3 x^4 - 2 x (x^2 + 1)^{-3/2}$$