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HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS 
 

1 Higher−Order Differential Equations  

 

Consider the differential equation: y(n) + pn−1(x) y(n-1) + . . . + p1(x) y' + p0(x) y   =   0 

 

General Solution 

A general solution of the above nth order homogeneous linear differential equation on some interval I is a function of the form 

y(x)   =   c1 y1(x) + c2 y2(x) + ... + cn yn(x) 

where y1 , . . ., yn are linearly independent solutions (basis) on I. 

 

 

Theorem − Existence and Uniqueness of IVP 

If the p0(x), p1(x), . . ., pn−1(x) in the differential equations are continuous on an open interval I, then the initial value problem [with 
x0  in I] has a unique solution in I. 
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Wronskian 

The Wronskian of y1, y2, . . ., yn is defined as 

 W(y1, y2, . . ., yn)   =   











y1 y2 ... yn

y1' y2' ... yn'

y1'' y2'' ... yn''

... ... ... ...

y1
(n−1) y2

(n−1) ... yn
(n−1)

   

 

Theorem − Linear Dependence and Independence of Solutions  

 

Let p0(x), p1(x), . . ., pn−1(x)  be continuous in I, [x0, x1], and let y1, y2, . . ., yn be n solutions of the differential equation.  Then 

(1) W(y1, y2, . . ., yn) is either zero for all x ∈  I or for no value of x ∈  I. 

(2) y1, y2, . . ., yn are linearly independent if and only if 
 W(y1, y2, . . ., yn) ≠  0 

 

Theorem − Existence of a General Solution  

 

Theorem − General Solution  
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[Exercise]  Consider the third−order equation 

 y''' + a(x) y'' + b(x) y' + c(x) y   =   0 

where a, b and c are continuous functions of x in some interval I.  The Wronskian of y1(x), y2(x), and y3(x) is defined as 

 W   =   









  y1 y2 y3

  y1' y2' y3'

  y1'' y2'' y3''

  

where y1, y2 and y3 are solutions of the differential equation.   

(a) Show that W satisfies the differential equation W' + a(x) W   =   0 
(b) Prove that W is always zero or never zero. 
(c) Can you extend the above results to nth–order linear differential equations? 



Higher-Order ODE - 4 

2 nth-Order Homogeneous Equations with Constant Coefficients 
 

y(n) + an−1 y(n-1) + . . . + a1 y' + a0 y   =   0 Differential Equation 

λn + an−1 λn-1 + . . . + a1 λ + a0   =   0 Characteristic Equation 

 

Case I Distinct Roots, λ1, λ2, . . ., λn 

The corresponding linearly independent solutions are 

eλ1x , eλ2x , . . ., eλnx
  

 

Case II Multiple Roots, λ1   =   λ2   =   . . .   =   λm   =   λ 

The corresponding linearly independent solutions are 

eλx
 , x e  

λx , x2
 e  

λx , . . ., xm−1
 e   λx

 

Case III  Complex Simple Roots    λ1   =   γ + i ω   ,    λ2   =   γ − i ω 

The corresponding linearly independent solutions are 

eγx
  cos ωx   ,   e  

γx
 sin ωx 
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Case IV Complex Multiple Roots 

λ1   =   λ3   =   λ5   =   . . .   =   λ2m−1   =   γ + i ω 

λ2   =   λ4   =   λ6   =   . . .   =   λ2m   =   γ − i ω 

The corresponding linearly independent solutions are 

eγx
  cos ωx,  x e  

γx
 cos ωx,  . . .,  xm−1 e  

γx
 cos ωx 

eγx
  sin ωx,  x e  

γx
 sin ωx,  . . .,  xm−1 e  

γx
 sin ωx 
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[Example]     y''' − 3 y'' − 10 y' + 24 y   =   0 

[Solution] The characteristic equation is λ3 − 3 λ2 − 10 λ + 24   =   0   or ( λ − 2 ) ( λ + 3 ) ( λ − 4 )   =   0 

λ   =   2,  −3,  4    (Case I) 

⇒ y   =   c1 e2x  + c2 e  –3x + c3 e4x  

 

[Example] y(4)  – 4 y''' + 6 y'' − 4 y' + y   =   0 

[Solution] The characteristic equation is  λ4 − 4 λ3 + 6 λ2 − 4 λ + 1   =   0    or ( λ − 1 )4   =   0 

 λ   =   1,   1,   1,   1       (Case II) 

⇒ y   =   c1 ex  + c2 x e  x + c3 x2  e  x + c4 x3  e   x

 

[Example] y(5)  – 2 y  (4) + 8 y'' − 12 y' + 8 y   =   0 

[Solution] The characteristic equation is λ5 − 2 λ4 + 8 λ2 − 12 λ + 8   =   0    or ( λ + 2 ) ( λ2 − 2 λ + 2 )2   =   0 

λ   =   –2,   1 + i,   1 − i,   1 + i,   1 − i     (Case IV) 

⇒ y   =   c1 e−2x  + c2 e  x cos x + c3 x ex  cos x  
+ c4 e  x sin x + c5 x ex  sin x 
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[Exercise 1]  Reduction of Order of Higher−Order Equations 

 

[Exercise 2]  Consider the third−order equation 

 y''' + a(x) y'' + b(x) y' + c(x) y   =   0 

and let y1(x) and y2(x) be two given linearly independent solutions.   

 

Define y3(x) = v(x) y1(x) and assume that y3 is a solution to the equation. 

(a) Find a second−order differential equation that is satisfied by v'. 
(b) Show that (y2/y1)' is a solution of this equation. 
(c) Use the result of part (b) to find a second, linearly independent solution of the equation derived in part (a). 

 

[Exercise 3]  [Euler-Cauchy Equation of the Third Order]  The Euler equation of the third order is  

 x3 y''' + a x2 y'' + b x y' + c y   =   0 

Show that y = xm is a solution of the equation if and only if m is a root of the characteristic equation 

 m3 + ( a − 3 ) m2 + ( b − a + 2 ) m + c   =   0 

What is the characteristic equation for the nth order Euler equation? 
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2 Nonhomogeneous Equations  

 

y(n) + pn−1(x) y(n−1) + . . . + p1(x) y' + p0(x) y   =   r(x) 

⇒ y(x)   =   yh(x) + yp(x) 

where again yh(x) = c1 y1 + c2 y2 + ... + cn yn  is a general solution of the homogeneous equation and yp(x) is a particular solution to 
the nonhomogeneous equation. 

 

 

 

 

 

 

 

 



Higher-Order ODE - 9 

 (1) Method of Undetermined Coefficients 

Same as in the Chapter 2. 

In summary, for a constant coefficient nonhomogeneous linear differential equation of the form 

 y(n) + a y(n−1) + . . . + f y' + g y   =   r(x) 

we have the following rules for the method of undetermined coefficients: 

 

(A) Basic Rule:  If r(x) in the nonhomogeneous differential equation is one of the functions in the first column in the following table, 
choose the corresponding function yp in the second column and determine its undetermined coefficients by substituting yp and its 
derivatives into the nonhomogeneous equation. 

 

(B) Modification Rule:  If any term of the suggested solution yp(x) is the solution of the corresponding homogeneous equation, 
multiply yp by x repeatedly until no term of the product xkyp is a solution of the homogeneous equation.  Then use the product 
xkyp to solve the nonhomogeneous equation. 

 

(C) Sum Rule:  If r(x) is sum of functions listed in several lines of the first column of the following table, then choose for yp the sum of 
the functions in the corresponding lines of the second column. 
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Table for Choosing  yp 

 r(x) yp(x)      

 Pn(x) a0 + a1 x + . . . + an xn 

 Pn(x) eax (a0 + a1 x + . . . + an xn) eax 

 





Pn(x) eax sin bx  
or/and

 
Qn(x) eax cos bx

  

(a0 + a1 x + . . . + an xn) eax sin bx  
              +
 
(c0 + c1 x + . . . + cn xn) eax cos bx

  

where Pn(x) and Qn(x) are polynomials in x of degree n (n ε 0). 
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(2) Method of Variation of Parameters 

 y(n) + pn-1(x) y(n-1) + . . . + p1(x) y' + p0(x) y   =   r(x) 

Given   ⇒ yh   =    c1 y1 + c2 y2 + . . . + cn yn          

 

Assume yp   =   u1 y1 + u2 y2 + . . . + un yn 

where u1, ..., un are functions of x.  Since the particular solution satisfies the non-homogeneous differential equation, we 
have 

 yp
(n) + pn-1(x) yp

(n-1) + . . . + p1(x) yp' + p0(x) yp   =   r(x) 

Now yp'   =   u1' y1 + . . . + un' yn + u1 y1' + . . . + un yn' 

Assume       u1' y1 + u2' y2 + . . . + un' yn   =   0          then yp'   =    u1 y1' + . . . + un yn' 

and yp''   =    u1' y1' + . . . + un' yn' + u1 y1'' + . . . + un yn'' 

Again, we assume 

 u1' y1' + u2' y2' + . . . + un' yn'   =   0  we have   yp''   =   u1 y1'' + . . . + un yn'' 

After differentiation n times, we have a set of simultaneous differential equations of u1', u2' . . ., un': 

 y1u1' + y2u2' + y3u3' + . . .         + ynun'   =   0 
 y1'u1' + y2'u2' + y3'u3' + . . .         + yn'un'   =   0 
 y1''u1' + y2''u2' + y3''u3' + . . .         + yn''un'   =   0 
 .... 
 y1

(n-2)u1' + y2
(n-2)u2' + y3

(n-2)u3' + . . .         + yn
(n-2)un'   =   0 

 y1
(n-1)u1' + y2

(n-1)u2' + y3
(n)u3' + . . .         + yn

(n-1)un'   =   r(x) 
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The solutions of u1', u2', ..., un' are 

u1'   =   
1

 W  









 0  y2  ...  yn

 0  y2'  ...  yn'

 ...  ...  ...  ...

 r(x)  y2
(n-1)  ...  yn

(n-1) 

   =  
 W1 
 W    r(x) 

u2'   =   
1

 W  









 y1  0  ...  yn

 y1'  0  ...  yn'

 ...  ...  ...  ...

 y1
(n-1)  r(x)  ...  yn

(n-1) 

   =  
 W2 
 W    r(x) 

..... 

un'   =   
1

 W  









 y1  y2  ...  0

 y1'  y2'  ...  0

 ...  ...  ...  ...

 y1
(n-1)  y2

(n-1)  ...  r(x) 

   =  
 Wn 
 W    r(x) 

Thus, we have 

yp(x)   =   y1 
⌡

⌠

 

 

 
W1
 W    r(x) dx  +  y2  

⌡

⌠

 

 

 
W2
 W   r(x) dx+  . . .  +  yn 

⌡

⌠

 

 

 
Wn
 W    r(x) dx 
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[Example] x3y''' − 4x2y'' + 8xy' − 8y   =   6x3(x2+1)-3/2,        x > 0 

[Solution]  Important!  We must re-write the above equation in the standard form: 

 y''' − 
4
 x   y'' +  

8
 x2  y' − 

8
 x3   y   = r(x) = 6(x2 + 1)-3/2 

 

The solution of the corresponding homogeneous equation is 

 yh   =   c1 x + c2 x2 + c3 x4 

or y1   =   x,     y2   =   x2,      y3   =   x4 

 

⇒ W(x)   =   









 x  x2  x4

 1  2x  4x3

 0  2  12x2 

   = 6 x4  ( ≠ 0 on (0, ∞) ) 

u1'   =  
1

 W  







 0  y2  y3

 0  y2'  y3'

 r(x)  y2''  y3''

  =  
1

 W  









 0  x2  x4

 0  2x  4x3

 6(x2+1)-3/2  2  12x2

  
( ) 3/ 25 2

4

12 1
6

x x
x

−
+

= =  2 x ( x2 + 1 )-3/2 

 u2'   =  − 3 ( x2 + 1 )-3/2 

 u3'   =   x-2 ( x2 + 1 )-3/2 
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After integration, we have 

 u1   =   
- 2

 (x2+1)1/2 
  

 u2   =   
- 3x

 (x2+1)1/2 
  

 u3   =   
2x2 + 1

 x (x2+1)1/2 
  

 

∴ yp   =   u1 y1 + u2 y2 + u3 y3   =   − 2 x ( x2 + 1 )-3/2 

 

⇒ y   =   c1 x + c2 x2 + c3 x4 − 2 x ( x2 + 1 )-3/2 

 


